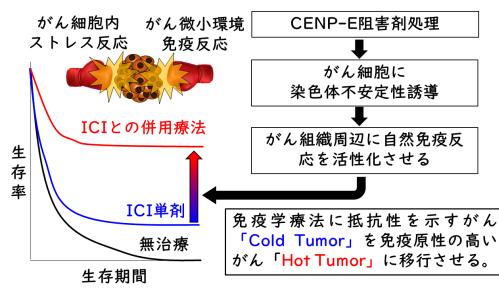
「Cold Tumor to Hot Tumor」をターゲット とした染色体不安定性誘導剤の創出

CPOT # 21-A-02

国立がん研究センター/先端医療開発センター/ゲノムTR分野

ユニット長:大橋 紹宏

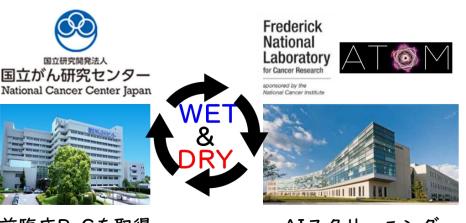


研究概要

Key Words: #低分子化合物, #免疫応答, #機械学習, #ドラッグスクリーニング

【目的】

免疫チェックポイント阻害剤 (ICI) の効果増強を目指し、新規 CENP-E阻害剤を創出する。

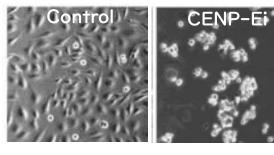


染色体不整列・ 不均等分配 がん細胞の炎症反応

(免疫反応)を惹起/

【研究体制】

創薬プラットフォームと機械学習技術の統合。 NCC EPOCとフレデリック国立がん研究所との協業

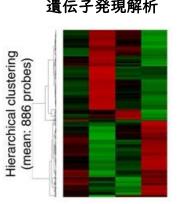


前臨床PoCを取得 薬効・薬理評価

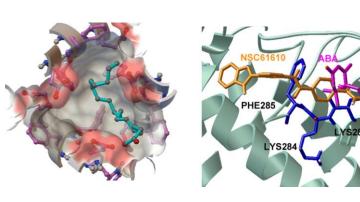
AIスクリーニング In Silico化合物デザイン

【薬理解析・機能解析の実施例】

In vitro 薬効試験



Ohashi A., et al. Nature Commun. (2015)


In vivo 薬効試験

遺伝子発現解析

【ドッキングモデル実施例】

Lu P., et al. Plos ONE (2015)

Lu P., et al. Plos ONE (2012)

新規性·優位性

米国フレデリック国立がん研究所と連携し、AI による in silico 化合物デザイン技術を用いた CENP-E 新規化合物の創出を進めてい る。さらに CENP-E 阻害剤が免疫チェックポイント阻害剤(ICI)感受性へ及ぼす影響を実験的に証明する(前臨床 PoC の取得)。

【新規性】 現時点では臨床入りしているCENP-E阻害剤はなく、ファーストインクラス(FIC)を狙えるポジション。

【優位性】 既存のCENP-E阻害剤に対しては活性・物性面で優位性を期待する。 STINGアゴニストに対しては「全身性免疫反応のリスクマネージメント」で優位性を期待する。 化学療法剤(DNA 損傷剤)に対しては自然免疫誘導の強度で優位性を期待する。

実用化提案

PD-1 抗体に代表される免疫チェックポイント阻害剤 (ICI) は、多 くの癌種で標準療法として使用されている。一方で、ICI に抵抗性を 示す「Cold Tumor」が 80% 以上存在しており、「Cold Tumor」にも効 果を示す新規治療法の確立がICI治療における大きな課題である。

我々が提案する CENP-E 阻害剤が、ICI との併用療法によって難治性 の「Cold Tumor」にも効果を示すことで、 Unmet Medical Needs を克 服する治療となることに期待している。

知財情報

Ohashi A.: Therapeutic agent for cancer, WO 2012/008507

連携への関心

- 製薬企業
- バイオテック/創薬支援
- ベンチャーキャピタル

関連文献

- Ohashi A, et al. (2015) Nature Commun. 6(1): 1-16.
- Ohashi A, et al. (2015) Plos ONE 10(12): e0155675.
- Ohashi A, et al. (2016) Oncotarget 9(26): 18480-93.
- Hirayama T, et al. (2015) J. Med. Chem 58(20):8036-53.
- Hirayama T, et al. (2016) Bio Med Chem Lett 26(17):4294-4300.