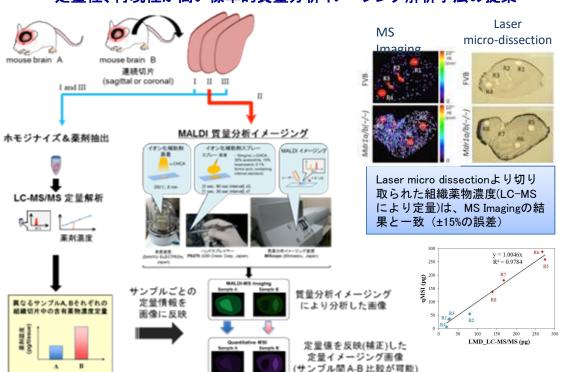
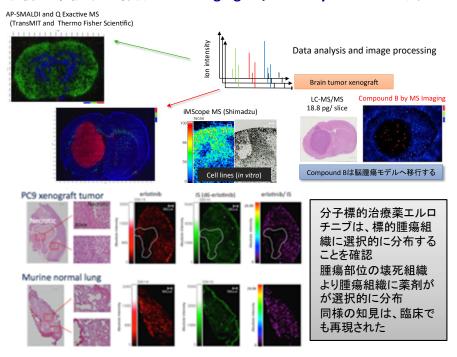
課題名	薬物イメージング(質量分析イメージング)
研究代表者と所属	濱田哲暢(臨床薬理トランスレーショナルリサーチ分野)
共同研究者と所属	

	Novelty	Speed	Capacity	Versatility	Cost	Human sample
Evaluation						
methods &						
systems						
Novel original						
cell lines						
New target						
identification						
Platform	0	×	0	0	×	0
technologies						
Compounds,						
Antibody, etc						

Strongest point=© Strong point=O Weak point=×


対象疾患	
アセットの概要	薬物動態の可視化(採取検体利用)
	ヒトならびに動物
関連する研究費	AMED 次世代がん
	厚生労働省革新的医薬品・医療機器・再生医療製品実用化促進事業
	国立がん研究センター研究開発費
論文、特許、共同研究、	Tsubata Y, Hayashi M, Tanino R, Aikawa H, Ohuchi M, Tamura K, Fujiwara Y,
grant	Isobe T, Hamada A. Evaluation of the heterogeneous tissue distribution of
	erlotinib in lung cancer using matrix-assisted laser desorption ionization mass
	spectrometry imaging. Sci Rep. 2017 Oct 3;7(1):12622.
	Aikawa H, Hayashi M, Ryu S, Yamashita M, Ohtsuka N, Nishidate M,
	Fujiwara Y, Hamada A. Visualizing spatial distribution of alectinib in murine
	brain using quantitative mass spectrometry imaging, Sci Rep,
	30;6:23749(2016).
	本技術を用いた共同研究:アストラゼネカ、中外製薬、第一三共

平成29年度 国立がん研究センター・製薬協加盟会社との研究開発

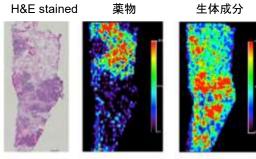

医薬品開発における質量分析イメージング技術利用に関する実用化研究

厚生労働省革新的医薬品・医療機器・再生医療製品実用化促進事業(平成24-28年)の研究成果に基づき、医薬品開発研究 (特に、がん分野における非臨床試験)に利用するための実用化研究を産学にて行い、技術普及と標準化を目指す。

定量性、再現性が高い標準的質量分析イメージング解析手法の提案

革新的薬物動態解析(new imaging PK/PD analysis)の応用研究

本研究提案の方法・期待される研究成果

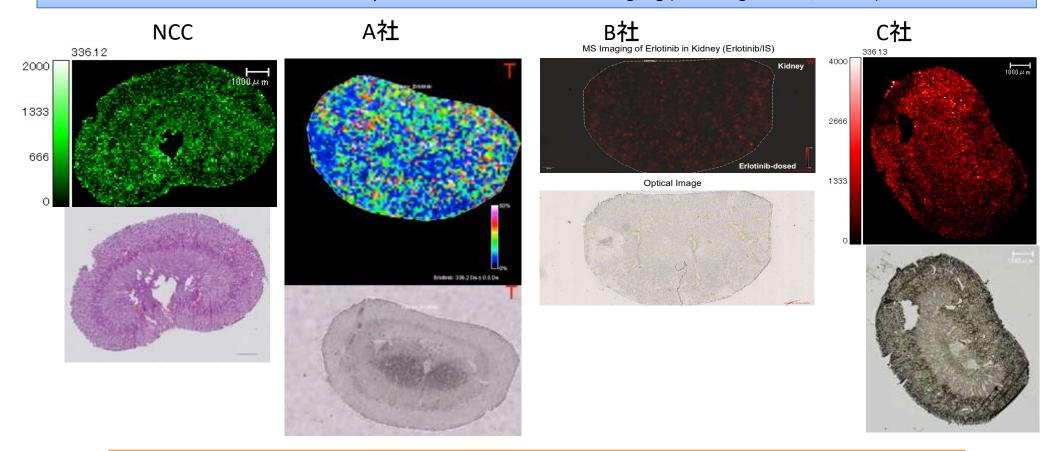

- ◆ 解析検体(実験動物・ヒト検体)を国立がん研究センターから供給し、協力製薬企業にて解析を実施
- ◆ イメージング解析結果のバラツキの要因を解析し、解析アプリケーションの標準化を検討
- ◆ 前処理・再現性・確認方法・標準操作手順書を作成し、 国内技術普及とガイドライン作成
- ◆ がん創薬開発にてPDXを用いた非臨床薬理試験においてレギュラトリーサイエンスに基づく薬物イメージング技術の構築と実用化

質量分析イメージングの現状

薬剤分布の強弱は画像化できるが濃度は不明

LC-MS/MS併用で画像を標準化し、検体間の 比較が可能となった(上記の研究成果)

問題点:組織検体前処理の装置と画像解析 アプリケーションの違いによる差が大きい



解決策:標準解析手法(前処理・画像処理)を示すことで再現性・操作性の向上可能

共通サンプルを用いた相互解析(製薬企業との共同研究)

エルロチニブ投与腎臓切片におけるイメージング画像パイロット試験

60 min after orally administration of Erlotinib 50 mg/kg (SCID-Beige mouse, ♀10W)

各社任意の設定により解析を実施 スライドガラス、イオン化補助剤及びコーティング、MSI機器設定、空間分解能、画像描出設定など

バラツキが大きいため、解析(前処理)手法の統一化(ガイドライン化)が重要